

 Navigation

 	
 index

 	
 next |

 	vlbuildbot 1.0 documentation

Welcome to vlbuildbot’s documentation

Contents:

	The VectorLinux Buildbot
	Introduction:

	Why use a buildbot?

	Submitting a new package

	SlackBuild Guidelines:

	Editing existing (vectorlinux) scripts for compatibility with vlbuildbot

	Handling Dependencies

	The life of a package

	How the bot works

	Package Maintenance
	General Guidelines

	FAQ

	Package testing (built-in testing)
	How it works

	How to write tests

	Requirements on the tests script

	Known Limitations

	Repository Maintenance
	What you need to know

	Repository Guidelines
	Repository Layout

	Preparing for Distro Release

	Repository Tool
	Introduction & Project Goals

	Proposed Workflow

	Implementation

	Bot Maintenance
	Maintenance on the bot master.

	Maintenance on the slave.

	Preparing a new slave.

	Interacting with the bot
	Working with git

	Interaction via the IRC bot.

	Interaction via the web interface.

	Packagers FAQ

	Packager Tips
	How to avoid failed builds.

	Search Page

 Copyright 2012, M0E-lnx.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	vlbuildbot 1.0 documentation

Packaging guidelines for the VectorLinux buildbot

Introduction:

The packaging procedures for use with the VectorLinux Buildbot are a
bit different, although the principles are still the same and some of
the steps on the procedure remain unchanged. In the past, one would
normally generate a build script (SlackBuild in most cases), then one
would get the source code for the application as well as a fitting
slack-desc file. When it was built, one would upload a complete
source directory containing a tarball, description, and build script
as well as the binary package itself (.txz as of VectorLinux 7.0).

With the buildbot system, things change a little bit. You still need
to generate a script (See Buildscript Guidelines below), and you still
need a description file. However, the only thing you upload is the
build script and any supporting files it needs (slack-desc, patches,
etc). See the guide for submitting a package below.

Why use a buildbot?

	Allows us to build packages for multiple architectures virtually
parallel to each other. This means that the x86_64 version of every
package in our repositories will be available at the same time the
x86 package is ready, without the need for anyone to do any extra work.

	Makes package maintenance easier.

	Would allow us to release security fixes in a timely manner.

	Makes the job of the repo maintainer easier.

	Enforces consistency during the development of the distro by forcing
developers and contributors to re-use the existing tools and
resources as much as possible.

	Allows us to see which packages are failing and why so we can
address the changes and get them fixed.

Submitting a new package

The following steps should be taken to submit a new package to the
database.

	Generate the build script with sbbuilder. (See Buildscript Guidelines below).

	Get or write a slack-desc file for the application you are building. You
can usually find them online. If they don’t exist, you need to create one.

	Execute the script to make sure it builds on your box. Mainly, this will
make sure the LINK and build procedures are correct on the SlackBuild.
Make any corrections to the SlackBuild as necessary.

	Submit your SlackBuild, slack-desc and any other supporting files
(patches, icons, .desktop files, etc) to the appropriate git repository
for the vector release it should be built for. ie, for vector 7.1, upload
your work to http://bitbucket.org/VLCore/vl71

SlackBuild Guidelines:

All SlackBuilds (with very few exceptions approved by a buildbot
maintainer) submitted for inclusion on the buildbot system
must meet the following requirements:

	Must be generated by sbbuilder. (some modifications for sbbuilder will be
released soon for including stuff useful for the bot)

	Must include a value in the LINK array.

	Must list any and all dependencies required to build the package
in an array named MAKEDEPENDS. This is an array separated by
a single space character. See ‘Handling Dependencies’ below.

	The script must be sourceable. Meaning, we should be able to source
the script from a shell without running it. This can be accomplished
by adding a if ["$NORUN" != 1]; then at any point after the
BUILD ENVIRONMENT has been set in the script and the source is extracted.
The if must be closed at the end of the script.

	Must be tested by the contributor to make sure it is free of syntax
errors and to make sure it downloads its source package correctly.

	Must be accompanied by a slack-desc and any other files the
SlackBuild needs to run successfully. This includes any patches,
icons, .desktop files, etc.

All of these apply to every single submission. There will be special
cases where an exception to the rules needs to be made. In such
cases, communication between the package maintainer and the buildbot
maintainer will determine how it will be implemented.

Editing existing (vectorlinux) scripts for compatibility with vlbuildbot

Existing vectorlinux build scripts can be adapted for compatibility with
vlbuildbot. Most scripts only require 2 small adjustments.

	Fill in the LINK array.

	Add the if ["$NORUN" != 1] condition.

DO NOT hard code package names and version numbers into LINK. The
string in LINK must read something like:
http://somehost.com/$NAME/$NAME-$VERSION.tar.gz instead of:
http://somehost.com/foo/foo-1.0.tar.gz.

After this, simply test the script to make sure it does indeed download
the source code, and submit

Handling Dependencies

The buildbot is equipped with a small tool to resolve any dependencies
needed to build your package. But you must list them in the
MAKEDEPENDS array of your SlackBuild. To solve these, the bot
will first look in the official VectorLinux repositories. If a
dependency is not in the repositories, it will look in the source
repository for the release it’s working for to see if we have
build scripts that will produce the package needed. If a dependency
is not found at either location, your build will fail immediately.

Note

The MAKEDEPENDS array should only list dependencies needed to build
your package, not to run it. Requiredbuilder will list all the
dependencies needed to run the application you just packaged.

Note

Listing packages in MAKEDEPENDS forces the build slaves to always
use the latest versions of the listed packages available.

How to list your build-time dependencies

Consider the following scenario.

You are building package ‘foo’. But when you run the SlackBuild
locally (for testing before submission), you find that the configure
step needs ‘libbar’. You would do the following.

	Edit your SlackBuild to add ‘libbar’ to your MAKEDEPENDS.

	Install libbar on your local system so you can continue to test the
SlackBuild.

	Run the SlackBuild again.

Repeat those steps for every build dependency you need to list for your
SlackBuild. If you need to depend on a package that is currently not
in the official repositories, you will have to submit buildscripts for
your dependency too.

Note

In rare cases, the package you are building may conflict with another
package, or will not build if a certain package is installed. To have
the build slave remove a package from the build environment before
building your package, list your conflicting package with a ”!” prefix
(ie "MAKEDEPENDS="!foobar").

Note

The default bahaviour for resolving build-time dependencies is as follows to
first attempt to install the package from the repositories (via slapt-get). If
that fails, then the package listed in MAKEDEPENDS will be built from source,
and installed in the build environment before the requested package is built. If
the package fails to install from the online repos and from source code, the
build for the requested package will fail until the dep is question is resolved.

The life of a package

The following explains how a package is created and how it ends up in
the repositories.

	A contributor (packager) submits a buildscript to the git repository.

	The buildbot master will detect the change on the git commit logs and
instruct the build slaves to build the new package.

	The build slave receives notification from the master that a new package
needs to be built, and runs the script submitted by the contributor.

	The build slave notifies the master of the build results. If the build
was successful, the binary package and source code are uploaded to
http://vlcore.vectorlinux.com/pkg/

	Once the package makes it to vlcore.vectorlinux.com, it is picked up by
other tools for processing and submission to the official VectorLinux
repositories.

How the bot works

The VectorLinux buildbot is a special configuration of the buildbot
tool found at http://buildbot.net
It consists of at least 2 parts. One master, and at least one slave.

The Master

The buildbot master is responsible for the following tasks:

	Monitor the git source repository for changes.

	Assign tasks for each build slave as necessary.

	Collect results data and build logs from the build slaves.

	Expose build results and logs via a web ui.

	Provide an IRC bot as another way to force builds and notify the
dev channel of events taking place.

	(currently disabled) Provide email notification of triggered
events.

The Slave

The buildbot slave(s) are responsible for the following tasks:

	Receive instructions from the build master.

	Carry out the actual build process when instructed by the master.

	Relay build results and log files back to the master.

	Upload the resulting binary package and source tree to the pool
location.

 Copyright 2012, M0E-lnx.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	vlbuildbot 1.0 documentation

Package maintenance guildelines

This guide explains how package maintenance is done for packages contributed to
the VectorLinux Buildbot [http://vlcore.vectorlinux.com/buildbot] system.
The following guidelines apply to all package maintenance performed to every
package in the database.

General Guidelines

	All package revisions Must increase the build value on the updated
package. This will help slapt-get detect the available update on all
end-user’s machines.

	All version bumps (increases) MUST reset the BUILD value back to 1

	All SlackBuilds must be tested by the contributor before they are submitted.

How to maintain a package

When performing maintenance on a package, always follow these guidelines to
make sure your contributions are in line with the rest of the development
efforts.

	Change to the directory holding the clone of your repository. This is the
location where you ran git clone http://bitbucket.org/VLCore/vlxx. The
slackbuilds can be found in the var/vabs directory of each reposiroty.

	Locate the application(s) you want to maintain or update, and open the
SlackBuild with your favorite text editor.

	Make your changes to the build script and save it (with the same name).
Changes should include any changes in package version, build number, URL to
source tarball direct download, or other necessary build procedure
changes.

	Run the script to test it’s basic functionality.

	When you have verified that the script runs and does not return an error,
then you commit your changes, and push them to the online git repository.

Note

ALWAYS run git pull before you decide to modify any SlackBuild and
before you run git commit. This will avoid conflicts and makes for a
good workflow betweek many contributors at the same time for the same repository.

Typical maintenance example

A typical package maintenance procedure would be necessary when a new version
of an application is released from upstream. At that time, the packager would
need to do the following.

	git clone https://bitbucket.org/VLCore/vl71.git

	cd vl71/var/vabs/

	Find the SlackBuild in the repository that builds the application that was
just released.

	Edit the SlackBuild to update its VERSION value

	Reset the BUILD value back to 1 (with every version bump, the release
should be reset back to 1)

	Make sure the LINK value can download the new version of the source
tarball.

	git pull origin master

	git add your_modified.SlackBuild

	git commit -m 'your commit message goes here'

	git push origin master

You are done.

FAQ

	Q:

	If I have to test the SlackBuild myself, why can’t I just upload package
instead of the SlackBuild?

	A:

	Contributing a SlackBuild results in multiple packages for different
architectures created from your SlackBuild. Uploading a package only
contributes to your current system.

 Copyright 2012, M0E-lnx.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	vlbuildbot 1.0 documentation

Package Testing

This guide explains how to use the built-in package testing facilities inside
the vlbuildbot build system.

How it works

The vlbuildbot system offers the ability to perform tests on the resulting
package(s) created by the .SlackBuild file. The testing system is pretty
much wide open for the contributor to write their own tests for the package
they are contributing. In a nutshell, this is how the process goes.

	The .SlackBuild file is executed. If this exits in error, the build is
marked as failed, and everything halts there.

	After the .SlackBuild exits, the bot will look for a file named
<package_name>.tests.sh, where <package_name> refers to the name of
the program you are building. For example, the htop/src directory will
contain htop.SlackBuild and htop.tests.sh if testing is desired.
If the .tests.sh file is found, the bot will install the package it just
created and execute the <package_name>.tests.sh file. If this program
returns an error, the build is marked as failed, and the package is
discarded.

How to write tests

The syntax to a tests.sh file is just plain shell script. You can assume
the resulting package has been installed by the time this script is executed.

The idea behind te tests file is to verify that a package works as it should,
so you could run any number of tests against the package. For instance

	Check the existance|permissions|version of a file after the package is
installed.

	Use the installed program to perform a simple task to make sure it works as
it should.

Sample use case

When testing packages like python, perl, lua or any other programming
language package for example, you could also place a sample program written in
that language and execute it from your tests.sh file.

Requirements on the tests script

Generally, the tests script is wide open to whatever you want to test for using
shell syntax. In order to properly work though, the following criteria must be
met by the .tests.sh program.

	The tests program must follow the same naming convention used throughout
the vlbuildbot system. For instance, the htop program will have a
htop.SlackBuild and a htop.tests.sh file is testing is desired
after the build completes.

	
	The script must return a value (ie, if it errors out, return a value greater than 1).

	Not having this will produce false positives and the render testing useless

	The script must be placed in the same directory as the .SlackBuild

	All resources required by the .tests.sh must be provided and placed

on the same location as the tests file, ie, a test hello world program
to be compiled as a test.

Note

The tests are performed in the same environment that was left after the package
was built. All packages installed as MAKEDEPENDS of the .SlackBuild
are still present when the tests run. Any run-time dependencies your package
may need, and that are not present on the default building environment can be
installed via slapt-get from the tests.sh program.

Known Limitations

As of the time of this writing, the package testing has the following known
limitations.

	X applications cannot be launched from the .tests.sh file. This is
because the X Window System is not reachable by the docker container where
the tests are ran. This limits the ability for instance to launch a GUI
application and take a screenshot.

Note

Due to the fact that this is the first attempt at automatic package testing,
more limitations or caveats to this rough-draft implementation may surface.
In a case like that, a bug report should be filed at
http://bitbucket.org/VLCore/vlbuildbot

 Copyright 2012, M0E-lnx.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	vlbuildbot 1.0 documentation

Repository maintenance guildelines

This guide explains how the maintenance of the official VectorLinux
repositories is done when working with packages contributed to the
VectorLinux Buildbot [http://vlcore.vectorlinux.com/buildbot] system.

At the present time, there are no tools to automatically move the packages to
the official repositories. When a packager contributes a package or package
update, the buildbot will build as instructed, and place the resulting
packages in http://vlcore.vectorlinux/pkg/untested.

The repository maintainer will have to move the packages like they usually do
now, with the exception that each package should be tested before moving it to
the repositories to make sure the package works as expected.

What you need to know

	The bot collects packages in http://vlcore.vectorlinux.com/pkg/untested

	Source code for the packages can can be found at
http://vlcore.vectorlinux.com/src/

	You should delete the packages from the untested repository once the
package has been moved to the official repositories.

	You must trigger the scripts to update the metadata on the untested
repository as well as the official repositories when you perform
maintenance.

 Copyright 2012, M0E-lnx.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	vlbuildbot 1.0 documentation

Repository Guidelines

Repository Layout

Like all other distros, the VectorLinux repositories are divided into
different areas. Traditionally, these are named as follows.

packages

This area of the repositories holds the packages that ship on the ISO
image at the time of the release. These will be outdated as development
progresses, but are to be kept there for long term support. These packages
will remain there and will not be updated.

Note

In order to maintain stability and support, the packages in this
section do not receive further updates.

patches

This area contains stable, tested packages that represent updates and and
security fixes to the packages in the packages section. The packages
should be moved to this area only after being reasonably tested.

extra

This area contains packages that are considered stable enough but that are
not vital to the system. These packages have been used to fulfill dependencies
on the vlbuildbot package building process. This area will contain other
featured packages that are not vital for a working system installation
but offer addditional functionality on top of the base system. These
packages are well supported but do not necesarily ship with the ISO image.
The packages in this area will receive updates.

untested

This area will contain the most current bleeding-edge versions of packages.
The vlbuildbot system will upload packages to this area directly, so that means
the packages in this area are the most unstable used for development and
testing purposes. Packages in this section are automatically purged every
week.

Preparing for Distro Release

While the distro is preparing a new release, all current packages will
remain in the untested area. This allows for testing ISO images to
be built and tested as a whole.

Once the testing ISO is stable enough to release the final product, the
following steps should be taken to create the stable areas of the repositories
for the new release.

	All packages that make up the BB (buildbase) ISO image should be moved
to the packages section of the new stable repository. These will
not receive any kind of updates at all.

	All other packages that are in the untested repository but wont ship
on the final ISO image should be moved to the extra section of
the repository.

	The patches section of the repositories will start off empty, most
likely with empty metadata just so slapt-get wont fail for the users.

	The untested repository will enter automatic purging mode limiting
the life of untested packages to one week from the time it gets built
and uploaded by vlbuildbot. That two week period should be enough for
stabilized packages to make it to extra or patches as needed.

	Development will begin on a new release, so a new untested repository
will be needed for the new release.

Note

The automatic purging cycle does not affect the untested area for
a release while in development.

Note

Packages that exist in the packages section should not exist in the
extra section. If a package from packages requires a security
or bug fix, that update goes in the patches section of the repositories.

 Copyright 2012, M0E-lnx.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	vlbuildbot 1.0 documentation

REPOSITORY MAINTENANCE TOOL SPECS

Introduction & Project Goals

This document outlines the spec of work for a tool required
by the Vectorlinux project to manage package repositories.

The implementation of an automated packaging system has allowed
great progress on the overall distro, but at the same time has
raised some issues regarding the package repository structure and
maintenance methods. The goal of this document is to provide the
specs for a tool (to be named later) that will allow the distro
developers to automate or ease the task of organizing the binary
repositories and streamlining the movement of packages around from
one section of the repositories to another.

Proposed Workflow

All packages built by the automated build system are pushed to the
vlcore server. This tool would allow a package maintainer to easily
take these packages allocate them to the correct location.

The repository maintainer will test the package directly from the untested
repository to make sure it works as expected and will either approve or
reject the package. Approved packages will be re-located to the appropriate
section of the repositories.

After a package has been relocated to the appropriate section on the
repositories, the copy from the vlcore server (untested repository)
should be removed.

Implementation

The tool should consist of a web-based application that would list
the packages recently uploaded and offer the user the option to approve or
reject the package.

If the package is approved, it will be allocated to the appropriate section
of the stable repositories. Otherwise, the package will be deleted and a bug
report must be filed on the SlackBuild that built the package indicating the
problems with the package and the reason the package got rejected.

Packages will be “approved” or “rejected” by managing metadata or “tags”
Sample tags for approved packages can be either EXTRA or PATCHES. After
that more tags can be applied to indicate which section of the repository it
should go in. These additional tags could be the name of the sub-directory inside
the repository section. Rejected packages should be tagged as REJECTED and
the package will be discarded immediately.

After every maintenance session, the slapt-get metadata should be updated to
propagate changes to all end users.

Note

The web-based application should be available to authorized users (repository
maintainers) only

 Copyright 2012, M0E-lnx.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	vlbuildbot 1.0 documentation

Vlbuildbot (bot) maintenance

Maintenance on the bot master.

The buildbot master needs to be restarted when at least one of the following
events take place.

	Adding or removing an application from the manifest.

	Adding or removing a slave from the bot system.

	Changes to the git polling frequency intervals.

	Changes in the master’s master.cfg configuration

Changes are only applied when the bot master is restarted.

Adding a new slave to the master.

To add a new slave on the vlbuildbot system, the bot administrator needs to
follow these guidelines:

Edit slavenodes on the master’s home directory following the existing
syntax. Each line represents one slave and is setup to contain four fields.
node_name | password | build_type | build_capacity.

	node_name represents the name of the slave.

	password sets the password the slave will use to authorize with the master

	build_type is one of “pkg” or “iso”. Slaves set to “pkg” will build packages
while others set to “iso” will build ISO images from packages.

	build_capacity represents the number of simultaneous builds this slave can
run at the same time.

Note

The buildbot’s home directory is the directory containing the master.cfg file

Maintenance on the slave.

The slaves almost never need to be maintained, however, the status of each
of the attached slaves can be seen at
http://vlcore.vectorlinux.com/buildbot/buildslaves

That page presents a table 7 columns. The column to the far right indicates
the current status for each slave. You may need to scroll down the page
to see the status because we have a lot of builders listed. If the status
says offline for any of the slaves, usually a slave restart will take
care of this.

Updating the build environments on the slaves.

Buildslaves are setup to automatically check the VLCore/vlbuildbot git tree
for available updates. Just about any update can be performed by pushing the
necessary instructions to the git tree.

The updated directory on that git tree contains a file named update.conf.
This file is used to define in simple BASH script how the update is rolled out.

Only (2) parts of the file MUST be changed for an update to be executed.

	REMOTEVERSION. This is normally set to a date value (ie 20130423). The
update system compares this value to the existing value in the build environment
and determines if an update is needed.

	function update_slave(). This bash function contains the instructions
that make up the update. Wether the update consists of renaming a file, or
updating the entire build environment with new ISO’s, it’s all done here.

Rolling out updates this way helps a lot with maintenance on the buildbot system
for VectorLinux. Since every slave is watching this git repository, all slaves
will be updated simultaneously.

Note

If a slave is busy at the time the update is detected, the slave will request a
graceful shutdown from the master. This means the slave will shut itself down
when the running build finishes (pass or fail). Then the bot will update itself
and come back online.

Note

Build slaves are setup to check for updates every hour, so not all slaves will be
updated at the exact same time.

Preparing a new slave.

Having multiple slaves attached to the buildbot master allows for simultaneous
maintenance of all tracked packages and spreading the workload between all
the active buildslaves. When more than one slave is suited to build the
requested package, the buildbot will pick one at random to build. The
following steps can be followed to prepare a new slave and get it ready for
connecting to the buildbot master.

Minimun Requirements (on the slave host)

To host a slave instance, you will need 64-bit hardware and at the very least
meet the following requiements.

	Hardware

	1024M RAM.

	30GB available disk space.

	2GB swap space.

	Software (must be installed and tested to work inside the isolated environment)

	procmail

	git

	dev-base (metapackage)

	kernel-headers

	setuptools

	lftp

	wget

Preparing the slave host

Build slaves normally run in an isolated environment. This can be either a
virtual machine or a LXC container. This guide will not cover how to set that
up, but will assume the procedure is performed within an isolated environment.
For a quick guide on LXC containers on VectorLinux or VLocity, see
http://vlcoredocumentation.readthedocs.org/en/latest/manuals/lxc-containers.html

The deployment directory of the VLCore/vlbuildbot git tree contains
the necessary tools to deploy a new slave. The following procedure must be
carried out to deploy a new slave

	git clone http://bitbucket.org/VLCore/vlbuildbot

	cd vlbuildbot/deployment

	Edit mkslave.sh and fill in the following fields:

	SLAVE_NAME: Should be the node name on the master for this slave

	SLAVE_PASSWORD: Password used to authorize this slave at the master.

	MASTER_HOST: IP or URL to the bot master

	MASTER_SLAVE_PORT: Port on which the master expects slave connections.

	cp ../slave/etc/vlbuildslave/slavehost.conf .

	Edit slavehost.conf and set the following fields as follows:

	SLAVES_ROOT: Path to where the slave will live.

	JAILS: Path to directory where the jails will be kept.

Note

This directory will require lots of disk space. This is where the
read-only areas are kept for clean builds. This could require up
to 20GB of disk space (subject to change)

	REPOS_HOME: This is where the git clones of the SlackBuild repositories
will be kept.

	TOOLSDIR: This should always be set to /usr/local/bin

Launching the slave deployment process

After all the above steps have been taken, you will need to launch the deployment
process from the same directory your mkslave.sh is at.

	Make sure the correct timezone has been set on your host. This can be checked

by making sure /etc/localtime and /etc/localtime-copied-from point to
a valid symlink. If they do not, fix it before you start the deployment process.

	export VLBB_REPO=$PWD/..

	export CMD_MKCHROOT=$VLBB_REPO/slave/sbin/mkchrootSB

	export SLAVECONF=$PWD/slavehost.conf

	sh mkslave.sh

After deployment

After the slave has been deployed, you will need to do a couple of things before
the slave can be used by the master.

	source /etc/vlbuildslave/slavehost.conf

	cd $REPOS_HOME

	git clone http://bitbucket.org/VLCore/vl70

	git clone http://bitbucket.org/VLCore/vl71

	git clone http://bitbucket.org/VLCore/vl72

	You should also provide the bot master’s administrator with a set of your root’s
ssh public keys. This is needed to allow your slave to upload built packages.

Test your setup

You can test your new slave by manually launching a build as follows.

/usr/local/bin/vlbb-jailedbuild -p htop -i 1 -a i586 -v veclinux-7.1

This will trigger a local build of htop for 7.1 32-bit on your isolated environment.
Repeat the step by issuing the command and changing the i586 to x86_64 and
the veclinux-7.1 to veclinux-7.0 or veclinux-7.2.

As a rule of thumb, a slave should be tested with the above procedure before connecting
it to the master. The slave should be tested to build a package for every release for
every architecture supported. If any one build process fails, the slave is not working
and cannot be connected to the master.

When testing a slave, use a simple package to build. Htop is a good package to use
because it does not take much to build. Normally, if a slave cannot build htop, it
will not work at all.

If all tests pass, then the slave is ready to be connected to the master and to begin
receiving build tasks.

Starting and Stopping the slave

After your slave has been setup and tested to be working, and you have been given the
assigned node name and password for your slave, you may start the slave by using
the provided rc script

/etc/rc.d/rc.vlbuildslave [start | stop] will start or stop the slave.

Note

The deployment process will begin by first downloading all of the necessary ISO
images to create the required jails. This will take time, bandwidth and disk
space.

Note

In the VectorLinux buildbot system, all buildslaves are required to be
able to build for both the x86 and x86_64 architectures. This can be
easily acheived by setting up the 32 and 64b chroots properly.
Setting the slave up in a virtual machine of any kind allows more
flexibility and independence from the real hardware.

 Copyright 2012, M0E-lnx.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	vlbuildbot 1.0 documentation

Interacting with the VectorLinux Buildbot

User interaction with the VectorLinux buildbot is mostly automated.
The bot monitors the the source repository configured at the master. Any
activity detected by the master will automatically trigger the bot to react
accordingly. Any change on any application included in the manifest at the
master will trigger that application to build.

Working with git

To many of us, git can be intimidating at the beginning, but you really
dont need to know it inside out to be able to work with the bot. Here is
what you do need to know.

Note

When working with vabs git tree, avoid using the git gui. Use
a terminal application instead. Get used to it. You’ll get a better
understanding of how git and the vabs git tree work that way.

About the vabs git trees

Our buildbot is configured to monitor several VectorLinux releases as of
this writing. Each release in represented with a separate git repository
under the VLCore project at bitbucket.org as follows

	Vectorlinux 7.0: http://bitbucket.org/VLCore/vl70

	Vectorlinux 7.1: http://bitbucket.org/VLCore/vl71

	Vectorlinux 7.2: http://bitbucket.org/VLCore/vl72

The contributor should clone the appropriate repository for the vector
release they are trying to build the packages for.

Example (Submitting builds for vectorlinux 7.0)

This is a short outline of how to submit builds intended for vectorlinux 7.0.
This short howto assumes you are working with a terminal application.

	
	git clone https://bitbucket.org/VLCore/vl70.git

	This command downloads a copy of the remote vabs tree to your local directory.

	Make your changes to the SlackBuild you want to have built by the bot.

	
	git add <name_of_your.SlackBuild>

	This will add your change to the list of changes to be published.

	
	git commit -m "Your summary of your changes here"

	This will save your changes to your local copy of the git tree. When commiting
changes, use a descriptive commit message. This lets other contributors know
what you by just glancing over the commit logs.

	
	git push origin master

	This will publish your changes to remote git tree and trigger the build on the
build slaves.

Note

The git push command MUST include the name of the branch you are working
with. The buildbot will only monitor changes to the master branch of each
repository. Changes to all other branches are ignored.

Note

If you are working with git over https (exactly as described here), the git
push command will ask for your use name and password. If you checked out the
git tree using ssh (requires ssh keys @ bitbucket), you will not be asked for
credentials.

Note

The procedure outlined above works for all monitored branches.

Forcing the bot to ignore your change

By default, the vlbuildbot system is monitoring every change made to the git tree, and
reacts by executing the changed scripts. To have the bot igore a specific change, you
can add the keyword !:nobuild anywhere on your commit message.

git commit -m 'This build will fail until deps are fixed !:nobuild

Interaction via the IRC bot.

It is also possible to interact with the bot via the IRCbot plugin. The IRC
status plugin is currently available at the #vectorlinux-pkgs channel on
freenode. The bot can take commands to force builds, and to check on any
specific builders.

Note

The IRC plugin for the buildbot is present on #vectorlinux-pkgs with
nick vlbuildbot as of this writing.

IRC Bot Commands.

Here are some useful commands you can try with the IRC bot. All commands
should be issued in the the following format.
botname: <command> or botname, <command>

	vlbuildbot: commands
This will list all the available commands for the bot.

	vlbuildbot: help <command>
Displays additional help on <command>.

	vlbuildbot: force build --vlrelease=veclinux-x.x <application> <reason_for_forcing_build>
Trigger an un-scheduled build of <application>.

Build time dependencies (MAKEDEPENDS)

By default, the buildslave will fulfill the necesary dependencies to build
the requested package as instructed in the MAKEDEPENDS variable of the
build script. The default behaviour is to install these dependencies from
binary packages in the existing repositories. If that fails, then it will
build the required package (that failed to install from slapt-get) from
source before continuing with the requested package. There is a special
provision for cases where you may need to compile a group of packages from
source (ie, when updating one package breaks others (ie, ffmpeg)). The
way to do that is by listing all the packages in question in the
MAKEDEPENDS list, and forcing the build via the IRC bot with a special
argument as follows.

vlbuildbot: force build --vlrelease=veclinux-x.x --props=build-deps=TRUE <app> reason for build

Note

The application name (ie, ‘htop’) will trigger a new build of the
package for both architectures.

Note

The build-deps property can only be applied to builds via the IRC bot or
via an authorized session at the bots web interface.

Special Build Properties Provisions

The following build properties can be specified when forcing a build from
the IRC interface.

	
	build-deps=YES|TRUE|NO

	Makes the slave build the specified MAKEDEPENDS from source code.

	
	metabuild=YES|TRUE|NO

	Sets the METABUILD environment variable in the build environment. This
can then be read in the SlackBuild to help with the creation of metapackages.

To set these environment variables in the build slave, add the following syntax
to the force build command:

--props=build-deps=YES metabuild=YES

Interaction via the web interface.

The web UI is not just informational. It also provides a way to force
builds of specific builders.

	Click on Builders.

	Find the application you want to force and click it’s name.

	Fill in the reason field on the page.

	Click the Force Build button.

Note

The Web UI is setup to NOT ALLOW forced builds by default. If you need
to be able to trigger builds from the Web ui, contact the bot master
administrator to get login credentials. The Force Build button may
be hidden until you log in to the web ui with the credentials given by
the bot master administrator.

There is also a Ping Builder button which will force a ‘refresh’ of the
available Buildslaves for this particular builder.

 Copyright 2012, M0E-lnx.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	vlbuildbot 1.0 documentation

FAQ (by packagers)

	I need to add (one or more) applications to the bot. How do I do that?

There are a couple of ways to do this.

	Via the IRC channel by issuing the command addaplication foo[,bar,foobar].

	Submit a list of the applications you want added as a bug report to the vabs project at http://bitbucket.org/VLCore/vabs

	The application i’m building needs foo installed, otherwise it will tail.

Add a MAKEDEPENDS line on your SlackBuild and list your build time deps there.

	The application I updated breaks some other package. I need to revert to an older version

Update the SlackBuild again to make it build the older version (known to work).
The broken version will be replaced by the older (working) version.

 Copyright 2012, M0E-lnx.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	vlbuildbot 1.0 documentation

PACKAGER TIPS

How to avoid failed builds.

The buildbot will automatically detect changes pushed to the SlackBuilds in
the git tree. However, an application may require a new dependency on a newer
version that it was not necessary to build older versions. This will result in
a failed build. To avoid failed builds, test your SlackBuild on a clean build
environment before you submit your change to the git tree. This can be accomplished
by keeping a build JAIL on any vectorlinux system (7.0 and newer).

How to setup a clean testing environment (sandbox)

Use this procedure to replicate the same environment as what is used in the
buildbot slaves to build your packages.

The following procedure should be ran as root user on an environment that has a
configured working slave setup. (you should have a /etc/vlbuildslave/slavehost.conf)

For this example, we will assume you will work with for the Vectorlinux-7.1 environment
in 32-bit. You will need to locate the path to the CHROOT-RO jail for this environment.
This can be found by sourcing /etc/vlbuildslave/slavehost.conf and looking at the
VL-7.1-BB-XN.N/ directory.

	source /etc/vlbuildslave/slavehost.conf

	cd /root

	mkdir devel

	cd devel

	mkdir rw

	git clone http://bitbucket.org/VLCore/vl71

	cd rw

	REPO=/root/devel/vl71 ROPATH=${CHROOTS\[32c7p1\]} /sbin/sandbox

This will give you a shell prompt with an AUFS read-only layer from the same environment
the buildslave uses to build packages assigned by the master. Your git repository is
mounted at /home/slackbuilds inside this shell. All changes made to your
/home/slackbuilds directory are saved even when you exit the jail. When you are done
working your tests, you may issue exit to return to your normal shell

Note

Packages installed inthe chroot environment will not affect the chroot when used
by the slave. They are only saved in the ‘rw’ directory as the read-write layer.
This layer can be removed and if you issue the sandbox command again, the jail will
be reset to the default settings with the default set of packages reverted.

 Copyright 2012, M0E-lnx.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	vlbuildbot 1.0 documentation

Index

 Copyright 2012, M0E-lnx.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

search.html

 Navigation

 		
 index

 		vlbuildbot 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, M0E-lnx.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

